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Friedel oscillations near Kondo impurities: A comparison of numerical calculation methods
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Recently, Affleck er al. derived the existence of Friedel oscillations in the presence of a Kondo impurity.
They supported their analytic derivation by numerical calculations using Wilson’s numerical renormalization
group (NRG). In this paper the size of the Friedel oscillations is calculated with the Friedel artificially inserted
resonance (FAIR) method which has been recently developed. The results of NRG and FAIR are compared.
The development of Friedel oscillations with a phase shift of 7/2 outside of the Kondo radius is confirmed.
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The properties of magnetic impurities in a metal is a fas-
cinating problem which was first studied by Friedel' and
Anderson.”> The disappearance of the magnetic moment at
low temperatures, the Kondo effect, is one of the most inten-
sively studied problems in solid-state physics.>~'® In the last
decade the Kondo effect has experienced a renaissance.
There is a growing interest in this field,'” extending from
magnetic atoms on the surface of corrals®® to carbon
nanotubes,?! quantum dots,?>® and nanostructures.?’ There
are still many open questions, particularly the real-space
form of the wave function and the resulting charge density
and polarization.

Recently Affleck, Borda, and Saleur’® (ABS) investigated
the formation of Friedel oscillations in the vicinity of a
Kondo impurity. Their result has the form

()= po= 2 F(L> <2k 1)7—7)
Pr\Tr) — Po = I‘D ry COos Fr— 2
—cos(2kFr—Dg>], (1)

where D is the dimension of the system, the coefficients Cp,
have the values C,=1/(2m), C,=1/(27?), and C3=1/(47),
and rg=huvg/ kgTk is the Kondo length. The function F(r/rg)
is a universal function which approaches the values +1 for
rirg<<l and —1 for r/rg>1. (I skipped the phase shift §p
due to potential scattering).

Besides the analytic derivation of Eq. (1) ABS performed
also numerical calculations using Wilson’s numerical renor-
malization group (NRG) approach.!! In the NRG technique
one uses Wilson states with a logarithmic discretization of
the conduction band [which extends from (=1, +1) (in units
of the Fermi energy) and has a constant density of states].

ABS pointed out that Wilson energy states are not well
suited for the calculation of such fine effects as Friedel os-
cillations. The reason is that the Wilson states average over a
large number of original k states. Therefore they used a
modified method which was introduced earlier by Borda (for
details see Ref. 26). With this approach they obtained a nu-
merical confirmation of the universal function F(r/&).

The author has introduced, during the past few years, a
new numerical approach to the Kondo and the Friedel-
Anderson impurity, the Friedel artificially inserted resonance
(FAIR) method. It is based on the fact that the n-electron
ground state of the Friedel Hamiltonian (consisting of an
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electron band and a d resonance) can be exactly expressed as
the sum of two Slater states

n—1 n—1
\I,Fr = AGSH a:@o + BdTH aj(bo, (2)
i=1 i=1

where ag is an artificial Friedel resonance state which deter-

mines uniquely the full orthonormal basis {a,}. An extension
of this ground state to the Friedel-Anderson and Kondo im-
purity yields good numerical results. Recently this method
was applied to calculate the Kondo polarization cloud for
those impurities.3' Therefore the author could not resist using
the FAIR method to calculate the Friedel oscillations of a
Kondo impurity. As in the paper by ABS I am treating the
one-dimensional case. (The two- and three-dimensional
treatments are essentially identical). Also the calculation is
restricted to zero-impurity scattering (the same as in ABS’s
calculations).

The construction of the Wilson states is essentially the
same in NRG and FAIR. One starts from an electron band
with linear dispersion, as shown in Fig. 1. If one follows
Wilson and measures the energy in units of the Fermi energy
and the wave vector k=k/ky in units of ky then the disper-
sion is just

e.=k—1.

This band contains a macroscopic number of states
¢, (=10%). Wilson subdivided the positive and negative half
of the energy band by a factor A. For example for A=2 the
negative band is divided into energy cells €,=(-1 :—%),

K 2

FIG. 1. The effective dispersion relation between energy ¢ and
wave number « in Wilson’s Hamiltonian.
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(’:1:(—%:—%),..., ¢,=(¢,:¢s1), where £,==27". In each en-
ergy cell €, one has Z, states ¢, with the energy (k—1).
Assuming that each state ¢,(r) has the same interaction with
the impurity then the states in the cell ¢, are combined to a
new state i,(r),

1
i (r) = \’_/Z_,,EKEGV @(r).

This state represents the full interaction of all states ¢, (r) in
¢, with the impurity (its interaction is enhanced by vZ,). The
sub-Hilbert space of €, contains (Z,— 1) additional states,

hn==3 . ¢K(r>exp(i2w‘z‘—f>

\Z

14

with [ and ux running from O to (Z,—1) (here (,/1?, is identical
to ¢,). The states with />0 have no interaction with the

impurity, but they have finite matrix elements (WV|HO|WV’ )
with the band energy Hamiltonian H,. These matrix elements
are neglected in the NRG and the FAIR calculation. This is
strictly speaking only correct when all the original states
©,(r) in a given energy cell €, have the same energy. In Fig.
1 the energy—wave-vector diagram is shown. The dashed line
gives the linear dispersion relation. The darkly shaded square
marks the energy cell &,. The thick zigzag line gives the
dispersion for which the Wilson NRG would be exact.

In the one-dimensional case the wave functions ¢, are
cosine and sine functions (only the cosine states interact with
the impurity). Since the energy ¢ and the wave numbers «
are given in normalized units of & and kp, it is natural to
measure distances also in reduced units. Throughout this pa-
per lengths are measured in units of Az/2, for example the
distance from the impurity is denoted as &=r/(N\y/2). The
Kondo length & is measured in the same units.

For the wave functions I use ¢, (£)=v2/A cos(mké) in the
range from —A/2 to +A/2. Here A is given by the size L of
the one-dimensional box, A=L/(\;/2). The number of states
¢, (&) in the energy cell €, is (£, =)/ (2/A).

This yields for the wave function of the Wilson state (&)

2 1 Sin(ﬂ o = zy)
\‘”(§V+1 - gy) 775 2

XCOS|:7T§<1+M):|. (3)

%(f) =

2

The exchange interaction is given by H,,
Hy=vd 2, 5 V000, 5V 40) S, )

where v, is the atomic volume and J is the exchange inter-
action.
The FAIR method yields for the Kondo ground state

Wy =[A, gab,d] +Aq dial_ 10)
+ [Ad,sa(g—TdI + As,ddWTLa(];+l]|O_>’

n—1 n—1 n—1 n—1

[0)= 11 ajﬁl_[l a}-—ﬂ)o . J0y= q aj—rl_[l “}-H‘I’o-
= J= = J=
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FIG. 2. The numerical result for the function F(&/&x) in Eq. (1)
for different ratios of neighboring energies {,. For the number of
Wilson states N=60 the ratio is A=2, for N=120 it is A= V2, and for
N=240 it is \=12.

The two FAIR states a;, and a;_ are obtained by optimiz-
ing the ground-state energy (see for example Refs. 31 and
32). They have the form

T v o f
ap+ = E Qp+Cy»
14

where c'f} are the creation operators of the Wilson states ,.
(These two states are maximally coupled to the impurity.)
The FAIR states ;). determine uniquely the two bases {a]. }.
The total charge density of the ground state Wy can be cal-
culated from the ground state with the help of the individual
wave functions of the Wilson states.

To calculate the charge density of the Kondo ground state
one has to calculate the charge densities of all states aj'i for
0=i<N/2 and add them according to the occupation of
these states. This yields the main contribution. But there are,
in addition, two interference terms which yield rather small
contributions. The total charge density is then calculated at
average distances from the impurity of
2, 4,8, .2 ...220 This is done in intervals of two
wavelengths (Aé=2 or Ar=\;) where a dense trace of the
charge density as a function of ¢ is calculated. For each trace
the position of the charge minima and maxima is determined
as well as the amplitude.

In Fig. 2 the numerical result for F(&/&g) is plotted.
It is the amplitude of the first term in Eq. (1), i.e.,
Cp cos(2kgr—D7F)/rP [which in one dimension is equal to
sin(27é)/(2m€)]. The abscissa is the logarithm (base 2) of
the average distance & from the impurities. [The change in
sign of F(&/&g) corresponds to a jump in the phase by r.]

The top curve with open circles is for N=60 Wilson states
with a ratio A=2 between neighboring energies &,. It con-
firms the statement by ABS that these Wilson states are not
well enough suited for the calculation of small charge fluc-
tuations on a length scale of the Fermi wavelength.
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To improve the calculation I tried a different path than
ABS. In the FAIR method the two essential states are the
FAIR states a;, and a), . When they are known one can eas-
ily construct the full orthonormal basis for each FAIR state
(with the condition that (a]®o|Ho|a]Pg)=0 for i,j>0). Th1s
is a trivial calculation with neghglble computer time. Each ao
is composed of Wilson states

N-1

vt
ap= 2 ajel,
v=0

where cfj is the creation operator of the Wilson state ¢,. The
square |ag|? gives the occupation or contribution of the state
c',[ or ¥, to ag. Since the state i, is constructed from the
original states ¢ the ratio of |a}|? divided by width of the
energy cell, i.e., p,=|af|*/({,s1—{,) gives the relative con-
tribution of the original states ¢, to the FAIR state ag. This
state density p,, corresponds to a function p(¢) with the con-
dition p({)=p, for {,<{<{,,,. The integral of p({) over the
energy is normalized,

N-1

Jﬂ ©ir=3 LS e,
L7 o G- T2

For large N the state density p({) shows a smooth depen-
dence on the energy. [This is shown in Fig. 4 for the example
of a Friedel resonance (see below).] Therefore one can ex-
trapolate p({) from a finite representation N and construct the
FAIR state for twice the number of states. The most natural
way to double the number of Wilson states is to set a new
energy ratio /() =\'= V\. In this way the FAIR states and
their full bases are obtained for N=120 (with a new A=12).
It turns out that the new solution for W is better than the old
one (for N=60) because its ground-state energy is lowered.
The second curve in Fig. 2 (open triangles) shows the nu-
merical result for the function F(&/é&k). It clearly improves
the result although it does not yet reach the value —1 for
large £ A second doubling of N yields N=240 and A=%2
The ratio of the width of an energy cell divided by the aver-
age energy is given by 2(A—1)/(\+1). For the usual Wilson
states with A=2 this ratio is 2/3. After two additional split-
ting of the states this ratio becomes about 0.173. Now the
energy states are much closer together. For N=240 the nu-
merical result for F(&/ &) is shown in the bottom curve of
Fig. 2. It finally shows the two limiting values of +1 at short
distances and —1 at large distances, in agreement with the
theoretical prediction.

Since the function F(&/ &) is a universal function a com-
parison of Kondo impurities with different Kondo energies is
appropriate. ABS performed a large number of calculations. I
want to show that the FAIR method yields the same univer-
sality. In the past we investigated Kondo impurities with dif-
ferent exchange interactions and, therefore, different Kondo
energies.’? Here, I consider the two examples with J=0.1
and J=0.08. One obtains the Kondo lengths from the corre-
sponding Kondo energies £x=2.35X 107 and 1.37 X 1075.

In Fig. 2 we plotted the amplitude of the first term in Eq.
(1) to extract the function F(&/&x). Now we determine the
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FIG. 3. (Color online) (a) The amplitude [1-F(&/&g)] of the
Friedel oscillation for two different Kondo energies (this paper). (b)
Reduction in the Friedel oscillation F(&/ &) is plotted versus &/ &x.
The points are the numerical results by ABS; the full curve is the
result of this paper.

actual amplitude A(&/&x) of the Friedel oscillation, which is

given by
cos -=
75

27é
cos(2méE— 6)
27é '

In Fig. 3(a) this amplitude A(&/&k)=[1-F(&/&)] is
plotted for the two different Kondo energies as a function of
log,(&/&k). Since the abscissa has a logarithmic scale the
curves are just shifted by log,(&x). Although the Kondo en-
ergies differ by roughly a factor of 5 the two curves are
essentially identical. Therefore this calculation confirms that
the amplitude of the Friedel oscillation is universal (for the

p(&) = po=[F(&éx) — 1]

=-A(&&)
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symmetric case and a linear dispersion relation). The numeri-
cal calculation yields a phase shift of 77/2 for distances larger
than two Fermi wavelengths. For most of the region
(6=log,(&/ &) = 16) the relative deviation is less than 1072

ABS gave two asymptotic functions for £<<& and

&> &
F(&&x) — 1 =378 In*(&/9)]
for £< ¢y and
F(&&) — — 1+ mwél (48) = 3(mW)* &/ (328)

for &> &, where w=0.4128. These functions, which are
shown as dotted curves in Fig. 3(a), have been shifted by 0.5
to the left (see upper scale). This means that I use a slightly
different definition of the Kondo energy than ABS, which
yields a different Kondo length. The ratio between our
Kondo energies is 2°3~1.4. This is not surprising because
ABS used Wilson’s definition, which requires the NRG cal-
culation, whereas we define the Kondo energy as the energy
difference between triplet and singlet state.

Figure 3(b) shows a comparison of the results of this pa-
per and of ABS for the function F(&/&g). The full (blue)
curve represents the data of this work, while the different
points represent the numerical data of ABS for different in-
teraction strengths. The explicit form of F(&/&) is not
known.

It is worthwhile mentioning that in my calculation the
Kondo ground state is calculated once. From this ground
state one obtains the Friedel oscillation for all distances é&.
ABS had to perform a new NRG calculation for each indi-
vidual distance & (which actually represents states with
slightly different ground-state energies).

One essential step in calculating the Friedel charge oscil-
lations was the repeated doubling of the number of Wilson
states. This was possible because the compositions of the
FAIR states ag . and ag_ are essentially given by the state-
density functions p_({) and p_({). This shall be demonstrated
for the FAIR state of a Friedel (resonance) impurity.

We take the Wilson electron band ranging from
(=1:+1) with constant density of states (equal to 1/2) and a
d resonance at the Fermi energy (E;=0) with an s-d matrix
element |V,,/>=0.1. The ground state is given in Eq. (2) with
the FAIR state a.

In Fig. 4 the values p,=|af|*/({,,—¢,) are plotted at the
discrete energies ({,,;+¢,)/2. The full circles are the values
for N=24 and N=2. Only a small fraction of the whole en-
ergy band is included in the figure to show an optimal sec-
t1on _The full triangles show the values for N=48 and

\2 whlle the stars represent the values of p, for N=96
and A={2. For each N the optimal ground state has been
derived. One recognizes that the points follow indeed a com-
mon function p(¢). This justifies the doubling of the Wilson
states since the new p, values can be obtained by interpola-
tion and extrapolation. This yields the composition of the
new FAIR state after the doubling of the number of Wilson
states V.

As an afterthought of this consideration I calculated the
Friedel oscillation for Friedel impurities with the
d-resonance energy at the Fermi level, E;=0, and very small
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resonance width A=m|V,,|>p, where p=1/2 represents the
density of states for the Wilson spectrum. By using rather
small values for |V[?=0.5x10"%, 1.0x10™*, and
2.0X 107 one can evaluate the amplitude of the Friedel os-
cillations as a function of &.

The numerical calculation yields a charge oscillation
App=Ap(&cos2mé— 8,)/ (2mE). The phase shift &, in the
range 3=log, £=19 is equal to 7/2 within 1% accuracy.
For distances shorter than the Friedel coherence length
(&,=2/|mV,|?) the amplitude is strongly suppressed. The
amplitude is also universal since the three curves in Fig. 5
would perfectly coincide if plotted as a function of (&/&g,).
This behavior is quite analogous to the Friedel oscillations of
a Kondo impurity. However, the functional dependence and
the long-distance amplitude differ.
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FIG. 5. The amplitude of the Friedel oscillation for Friedel im-
purities with s-d hopping matrix elements of |V, [>=2X 1074,
1 X107 and 0.5X 107*. The Friedel oscillations develop only for
distances larger than the Friedel length &g,.
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To conclude, the goal of this paper has been to reproduce
ABS result for the Friedel oscillations of a Kondo
impurity with the FAIR method. This is a rather delicate
problem because electron densities have to be calculated on a
spatial scale much smaller than the Fermi wavelength
A over distances of up to 10\ with a relative accuracy
of ANp/r, ie, 10° or better. The FAIR calculations
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confirm that the Friedel oscillations are strongly suppressed
within a distance of the order of a tenth of the Kondo
length.

The author is very much obliged to L. Borda who pro-
vided his original data and combined them with the data of
this work in Fig. 3(b).
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